Hermitian harmonic maps from complete Hermitian manifolds to complete Riemannian manifolds

نویسندگان

  • Lei Ni
  • L. Ni
چکیده

In this paper we study a nonlinear elliptic system of equations imposed on a map from a complete Hermitian (non-Kähler) manifold to a Riemannian manifold. This system is more appropriate to Hermitian geometry than the harmonic map system since it is compatible with the holomorphic structure of the domain manifold in the sense that holomorphic maps are Hermitian harmonic maps. It was first studied by Jost and Yau in [J-Y], and was applied to study the rigidity of compact Hermitian manifolds. We extend their existence and uniqueness results to the case where both domain and target manifolds are complete. Hopefully the results will be useful to study corresponding rigidity of complete Hermitian manifolds. Let M be a complex manifold with Hermitian metric (hαβ̄), and let N be a Riemannian manifold with metric (gij) and Christoffel symbols Γ i jk. A Hermitian harmonic map u : M → N satisfies the following elliptic system

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Harmonic Maps and the Topology of Manifolds with Positive Spectrum and Stable Minimal Hypersurfaces

Harmonic maps are natural generalizations of harmonic functions and are critical points of the energy functional defined on the space of maps between two Riemannian manifolds. The Liouville type properties for harmonic maps have been studied extensively in the past years (Cf. [Ch], [C], [EL1], [EL2], [ES], [H], [HJW], [J], [SY], [S], [Y1], etc.). In 1975, Yau [Y1] proved that any harmonic funct...

متن کامل

Clifford Structures on Riemannian Manifolds

We introduce the notion of even Clifford structures on Riemannian manifolds, which for rank r = 2 and r = 3 reduce to almost Hermitian and quaternion-Hermitian structures respectively. We give the complete classification of manifolds carrying parallel rank r even Clifford structures: Kähler, quaternion-Kähler and Riemannian products of quaternion-Kähler manifolds for r = 2, 3 and 4 respectively...

متن کامل

Hermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds

In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999